CONSUMO DE UM TRATOR ACOPLADO A UMA SEMEADORA ADUBADORA EM SISTEMA DE PLANTIO DIRETO PARA A CULTURA DA SOJA

CORTEZ, Jorge Wilson¹
CARVALHO FILHO, Alberto²
SILVA, Rouverson Pereira da³
FURLANI, Carlos Eduardo A.⁴

RESUMO: O plantio direto vem crescendo muito nos últimos anos e a necessidade de pesquisa juntamente com ele. O trabalho foi realizado na FCAV/UNESP de Jaboticabal, o delineamento utilizado para instalação do experimento foi em parcela sub subdividida. Os dados recolhidos para análise foram retirados de um datalloger que coleta os dados do trator. O consumo horário, consumo específico e consumo por hectare do trator, foi influenciado pela velocidade de deslocamento do trator.

PALAVRAS-CHAVE: Mecanização. Energia na agricultura. Plantio direto

CONSUMPTION OF A COUPLED TRACTOR THE A SEDDER-FERTILIZER IN NO-TILLAGE FOR THE CULTURE OF THE SOYBEAN

ABSTRACT: The no tillage is increasing a lot of knots last years and the need of research together with him. This work was accomplished in FCAV/UNESP of Jaboticabal, The delineation used for installation of the experiment was in Portion Sub Subdivided. the data picked up for analysis were retired of a datalogger that collects the data of the tractor. The real consumption, consumption specific and consummate for hectare of the tractor was influenced by the speed of displacement of the tractor.

KEYWORDS: Mechanization, Energy in the agriculture, No tillage

INTRODUÇÃO

A tecnologia do Plantio Direto, testada no âmbito da pesquisa no final dos anos 60, teve sua adoção por agricultores individuais e, em seguida, por grupos - os chamados Clubes da

¹Graduação em Agronomia na Faculdades Associadas de Uberaba – FAZU, Uberaba, MG, Fone: (0xx34) 33184188, CEP 38061500, email: jorge.cortez@zipmail.com.br

² Eng.º Agrônomo, Prof. M. Sc. Faculdades Associadas de Uberaba – FAZU e Fundação Educacional de Ituverava. FAFRAM - Curso de Agronomia.

³ Eng. ^o Agrícola, Prof. Doutor, FCAV/UNESP, Jaboticabal, SP. Departamento de Engenharia Rural,

⁴ Eng.º Agrônomo, Prof. Doutor, FCAV/UNESP, Jaboticabal, SP. Departamento de Engenharia Rural.

Minhoca, de Plantio Direto e os Amigos da Terra. Graças a eles e suas lideranças, vivenciamos esta grande mudança, polêmica, controvertida, mas vencedora, transformando a agricultura brasileira, tornando-a ambientalmente correta (SADE, 2001).

As técnicas de semeadura direta são complementos das atuais técnicas de conservação do solo, que envolvem menor mobilização e remoção da terra e maior quantidade de restos vegetais na superfície do solo, tendo como vantagem a redução dos custos operacionais de mecanização, além do aspecto conservacionista de redução das características físicas, químicas e biológicas do solo (NAGAOKA; NOMURA, 2003).

Os sistemas conservacionistas preconizam manter a superfície do solo coberta o maior tempo possível, e que essa cobertura esteja distribuída o mais uniforme possível. O manejo da vegetação tem por finalidade cortar ou reduzir o comprimento da mesma e fornecer condições adequadas para utilização de máquinas de preparo do solo e, principalmente, de semeadoras (FURLANI et al., 2003).

O presente trabalho objetivou avaliar o efeito de duas culturas para palhada (milheto e sorgo) em plantio direto juntamente com três tipos de manejos destas culturas com: rolo faca, triturador e herbicida em três velocidades de semeadura, coletando-se os dados retirados na semeadura em um trator instrumentado: consumo por hectare, consumo horário e o consumo específico juntamente com três tipos de manejos destas culturas com: rolo faca, triturador e herbicida em três velocidades de semeadura, coletando-se os dados retirados na semeadura em um trator instrumentado: consumo por hectare, consumo horário e o consumo específico.

MATERIAL E MÉTODOS

O experimento foi instalado e conduzido na Fazenda de Pesquisa e Extensão em área do Departamento de Engenharia Rural da Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista - UNESP, Campus de Jaboticabal, no Estado de São Paulo, localizado nas coordenadas geodésicas 21°15'22" latitude sul e 48°18'58" longitude oeste, com altitude média de 570 metros, ocupando uma área de aproximadamente 1,5 hectares, no período de novembro/2003 a março/2004. No local, onde foi implantado o experimento, o solo é classificado pela EMBRAPA (1999) como LATOSSOLO VERMELHO EUTROFÉRRICO

típico, textura argilosa, A moderado caulinítico vítreo. O clima de acordo com a classificação de Koeppen é Cwa, ou seja, subtropical úmido, com estiagem no período do inverno.

O delineamento utilizado foi em blocos inteiramente casualizados no esquema de parcela sub subdividida. Este esquema foi montado com 3 fatores (2 X 3 X 3) com 4 repetições, sendo que a parcela tinha como fator tipos de cultura para palhada que foram o milheto e o sorgo. A subparcela teve como fator o manejo das palhadas que os equipamentos rolo faca, triturador e pulverizador (herbicida), e a sub subparcela com três velocidades que foram V1 igual a 4,24 Km/h, V2 igual a 4,88 Km/h e V3 com 6,00 Km/h. Este experimento teve um total de 72 parcelas que possuíam 25 m de comprimento por 4,05 m de largura com 15 m de intervalo entre parcela para realização de manobras.

Utilizou-se um trator Valtra BM 100 com tração dianteira auxiliar, 76 kW de potência (100cv) no motor, instrumentado para operação de plantio na cultura da soja; semeadora-adubadora de precisão a vácuo da marca Marchesan (TATU), modelo COP Suprema com 7 linhas de semeadura, espaçadas de 0,45 m e sulcador tipo haste para adubo. Triturador de palhas marca Jumil montado, com rotor horizontal de 607 mm, largura de corte de 2,3 m, 32 pares de facas curvas oscilantes e reversíveis, sistema de regulagem de altura de corte e massa de 735 Kg. Rolo faca simples com 13 facas dispostas em sua periferia, largura de corte de 2,10 m e massa com lastro de 720 Kg. Pulverizador marca Jacto, modelo PJ 600, montado, com tanque para capacidade de 600 litros de calda, com massa de 195 Kg, barra de 9 metros, equipada com 18 bicos tipo leque para aplicação de herbicidas e bicos cônicos para aplicação de defensivos na soja.

O Sistema de aquisição de dados que, acionado na entrada da parcela, começava a armazenar os dados foi descarregado através de programa específico (PC 208W 3.2 – Datalogger Support Software) a um microcomputador convencional via cabo, onde eram construídas planilhas eletrônicas. Para aquisição dos dados, utilizou-se um micrologger CR23X de marca CAMPBELL SCIENTIFIC, INC., o qual se encontrava equipado com placa multiplexadora de 8 canais, modelo SDM-INT8 SN:209 para aumentar a quantidade de canais de entrada nos sensores. O consumo específico foi calculado para saber qual o gasto real do trator, utilizando a equação 1:

 $\mathbf{CE} = (\mathbf{DE} * \mathbf{C}) / \mathbf{P}$ (Equação 1)

em que:

CEE - Consumo específico (g/kwh);

DE - Densidade do combustível (g/L);

C - Consumo horário (L/h);

P - Potência (kW).

O consumo por hectare é igual ao consumo horário dividido pela capacidade efetiva.

RESULTADOS E DISCUSSÕES

Os resultados médios de consumo real são apresentados na Tabela 1. De acordo com o Teste de F, os fatores culturas e velocidades foram significativos, sendo maior o consumo para a cultura do sorgo e na V 3. De acordo com Nagaoka; Nomura (2003), o consumo horário de combustível na semeadura direta foi de 4,61 Kg.h-1, mostrando a vantagem deste método em relação aos demais. Enquanto que Chaplin (1988) encontrou um consumo de 7 litros.h-1, que mostra que os resultados encontrados neste experimento são bem acima da literatura.

O consumo específico (Tabela 1). Apenas para o item velocidade o Teste de F foi significativo, sendo a V1 o maior consumo específico. Nagaoka; Nomura (2003) encontraram um consumo específico operacional na semeadura direta de 19,69 Kg / ha.

Nos valores de consumo por área (Tabela 1), houve efeito significativo para os fatores cultura e velocidade. O sorgo e a V3 apresentaram o maior consumo por hectare. Schoroc (1985), em sistema de plantio direto, achou um consumo de 11,34 litros por hectare enquanto que, neste experimento, encontramos valores próximos da literatura.

Variáveis			
Fatores	Consumo horário (L.h ⁻¹)	Consumo específico (g.kWh ⁻¹)	Consumo por área (L.há ⁻¹)
	Cultu		(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
Milheto	13,86 b*	411 a	12,25 b
Sorgo	14,3 a	427 a	12,72 a
Manejo			
Rolo	14,29 a	415 a	12,71 a
Triturador	13,96 a	424 a	12,38 a
Herbicida	13,98 a	417 a	12,37 a
Velocidade			
V1	12,86 c	456 a	11,53 c
V2	13,75 b	427 b	12,21 b
V3	15,61 a	374 a	13,72 a
C.V. (%)			
Culturas	1,79	7,03	2,04
Manejo	3,62	9,44	4,28
Velocidade	3,45	7,77	4,03

^{*}Médias seguidas de mesma letra não diferem pelo teste de Tukey

REFERÊNCIAS

CHAPLIN, J.; JENANE, C.; LUEDES, M. Drawbar Energy use for tillage operations on Loamy Sand. **Trasactions of the ASAE**, St. Joseph, v. 31, p. 1692-1694, 1988.

EMBRAPA. Centro Nacional de Pesquisas de Solos. **Sistema Brasileiro de Classificação de Solos.** Brasília, 1999,412 p.

FURLANI, C. E. A.; LOPES, A.; TIMOSSI, P. C. .Manejo: trituradores e roçadoras. **Cultivar Máquinas**, Pelotas, n. 18, p.27-29, jan./abr., 2003.

NAGAOKA, A. K.; NOMURA, R. H. C. . Tratores: semeadura. **Cultivar Máquinas**, Pelotas, n.18, p.24-26, jan./abr., 2003.

SADE, M. Breve histórico do sistema de plantio direto na palha no Brasil. In: ENCONTRO NACIONAL DE PLANTIO DIRETO NA PALHA, 7.,2001, . **Anais...** Federação Brasileira de Plantio Direto na palha, 2001. p. 15-18

SCHROCK, M. D.; KRAMER, J. A.; CLARK, S. J. . Fuel requeriments for firld operations in Kansas. **Trasactions of the ASAE**, St. Joseph, v. 28, p. 669-674, 1985.