PREVISÃO DA PRODUÇÃO DE MILHO NO BRASIL POR MEIO DE MODELOS ESTATÍSTICOS LINEARES
DOI:
https://doi.org/10.3738/1982.2278.3830Palavras-chave:
Séries temporais, ARIMA, ETSResumo
O conhecimento de técnicas que permitam obter informações da tendência futura da produção é fundamental para o gestor rural. Diante disso, a finalidade desse trabalho foi realizar previsões. Para isso, foram utilizados modelos de séries temporais implementados no software livre R da produção brasileira de milho para as safras 2017/2018, 2018/2019 e 2019/2020. Foram aplicadas as metodologias ARIMA (Autoregressive Integrated Moving Average - Autorregressivo Integrado de Médias Móveis) e ETS (Error, Trend, Seasonal – Erro, Tendência, Sazonal). Ambos modelos provaram ser adequados. O modelo que apresentou os melhores resultados de previsão foi o ARIMA, cujo erro percentual médio absoluto das previsões foi menor que o apresentado no modelo ETS, quando comparado com os dados reservados para verificação da eficiência preditiva dos modelos ajustados. Os resultados demonstram a aplicabilidade dos modelos de previsão e ferramentas computacionais de fácil utilização. Tais técnicas visam contribuir no processo de tomada de decisão e planejamento por parte do gestor rural, que vê a cultura do milho, nos últimos anos, apresentar recordes de produção e ser um dos principais cultivares que contribui com a economia do Brasil.Downloads
Publicado
30.04.2021
Edição
Seção
Artigos